Metabolite Kinetics: The Segregated Flow Model for Intestinal and Whole Body Physiologically Based Pharmacokinetic Modeling to Describe Intestinal and Hepatic Glucuronidation of Morphine in Rats In Vivo.

نویسندگان

  • Qi Joy Yang
  • Jianghong Fan
  • Shu Chen
  • Lutan Liu
  • Huadong Sun
  • K Sandy Pang
چکیده

We used the intestinal segregated flow model (SFM) versus the traditional model (TM), nested within physiologically based pharmacokinetic (PBPK) models, to describe the biliary and urinary excretion of morphine 3β-glucuronide (MG) after intravenous and intraduodenal dosing of morphine in rats in vivo. The SFM model describes a partial (5%-30%) intestinal blood flow perfusing the transporter- and enzyme-rich enterocyte region, whereas the TM describes 100% flow perfusing the intestine as a whole. For the SFM, drugs entering from the circulation are expected to be metabolized to lesser extents by the intestine due to the segregated flow, reflecting the phenomenon of shunting and route-dependent intestinal metabolism. The poor permeability of MG crossing the liver or intestinal basolateral membranes mandates that most of MG that is excreted into bile is hepatically formed, whereas MG that is excreted into urine originates from both intestine and liver metabolism, since MG is effluxed back to blood. The ratio of MG amounts in urine/bile [Formula: see text] for intraduodenal/intravenous dosing is expected to exceed unity for the SFM but approximates unity for the TM. Compartmental analysis of morphine and MG data, without consideration of the permeability of MG and where MG is formed, suggests the ratio to be 1 and failed to describe the kinetics of MG. The observed intraduodenal/intravenous ratio of [Formula: see text] (2.55 at 4 hours) was better predicted by the SFM-PBPK (2.59 at 4 hours) and not the TM-PBPK (1.0), supporting the view that the SFM is superior for the description of intestinal-liver metabolism of morphine to MG. The SFM-PBPK model predicts an appreciable contribution of the intestine to first pass M metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption.

Recently, a physiologically-based, segregated flow model that incorporates separate intestinal tissue and flow to both a nonabsorptive and an absorptive outermost layer (enterocytes) was shown to better describe the observations on route-dependent morphine glucuronidation in the rat small intestine than a traditional physiologically-based model. These theoretical models were expanded, as the se...

متن کامل

Physiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours

Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...

متن کامل

Commentary: theoretical predictions of flow effects on intestinal and systemic availability in physiologically based pharmacokinetic intestine models: the traditional model, segregated flow model, and QGut model.

Physiologically based pharmacokinetic (PBPK) models for the intestine, comprising of different flow rates perfusing the enterocyte region, were revisited for appraisal of flow affects on the intestinal availability (F(I)) and, in turn, the systemic availability (F(sys)) and intestinal versus liver contribution to the first-pass effect during oral drug absorption. The traditional model (TM), seg...

متن کامل

Interspecies variation in the hepatic biotransformation of zearalenone: Evidence for bio-inactivation of mycoestrogen zearalenone in sturgeon fish

Zearalenone (ZEA) as mycoestrogen is found in human foods and animal feeds. Its estrogenic potency depends on its biotransformation fate. The hepatic biotransformation of ZEA in two species of sturgeon fish (Acipenser persicus and Huso huso) was investigated. ZEA was incubated with the hepatic microsomal and post-mitochondrial sub-fractions in the presence of NADPH and the metabolites were dete...

متن کامل

Interspecies variation in the hepatic biotransformation of zearalenone: Evidence for bio-inactivation of mycoestrogen zearalenone in sturgeon fish

Zearalenone (ZEA) as mycoestrogen is found in human foods and animal feeds. Its estrogenic potency depends on its biotransformation fate. The hepatic biotransformation of ZEA in two species of sturgeon fish (Acipenser persicus and Huso huso) was investigated. ZEA was incubated with the hepatic microsomal and post-mitochondrial sub-fractions in the presence of NADPH and the metabolites were dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 44 7  شماره 

صفحات  -

تاریخ انتشار 2016